本文共 2178 字,大约阅读时间需要 7 分钟。
为了解决这个问题,我们需要找到两个给定数组中的最长子序列,将它们拼接成一个最大的数,同时保持各自数组的相对顺序。我们可以使用贪心算法和单调栈来高效地实现这一点。
问题分析:
关键思路:
算法选择:
复杂度分析:
def max_number(nums1, nums2, k): def max_subsequence(arr, k): if k == 0 or len(arr) == 0: return [] stack = [] res = [] for i in range(len(arr)): pos = i while stack and stack[-1] < pos: stack.pop() if len(res) < k: res.append(arr[stack.pop()]) if len(stack) < k: stack.append(pos) return res m = len(nums1) n = len(nums2) best = [] start = max(0, k - n) end = min(k, m) for k1 in range(start, end + 1): k2 = k - k1 if k2 < 0 or k2 > n: continue sub1 = max_subsequence(nums1, k1) sub2 = max_subsequence(nums2, k2) merged = [] i = j = 0 while i < len(sub1) and j < len(sub2): if sub1[i] > sub2[j]: merged.append(sub1[i]) i += 1 else: merged.append(sub2[j]) j += 1 while i < len(sub1): merged.append(sub1[i]) i += 1 while j < len(sub2): merged.append(sub2[j]) j += 1 if len(merged) != k: continue if not best or len(merged) > len(best): best = merged elif len(merged) == len(best) and merged > best: best = merged return best# 示例1nums1 = [3,4,6,5]nums2 = [9,1,2,5,8,3]k = 5result = max_number(nums1, nums2, k)print(result)# 示例2nums1 = [6,7]nums2 = [6,0,4]k =5result = max_number(nums1, nums2, k)print(result)# 示例3nums1 = [3,9]nums2 = [8,9]k=3result = max_number(nums1, nums2, k)print(result)
max_subsequence函数:
主函数:
通过这种方法,我们可以高效地找到最大的k位数,同时保持各自数组的相对顺序。
转载地址:http://ndqmz.baihongyu.com/